Long range scattering for higher order Schrödinger operators
نویسندگان
چکیده
منابع مشابه
Long range scattering for the Wave - Schrödinger system with large wave data and small Schrödinger data
We study the theory of scattering for the Wave-Schrödinger system with Yukawa type coupling in space dimension 3. We prove in particular the existence of modified wave operators for that system with no size restriction on the wave data in the framework of a direct method which requires smallness of the Schrödinger data, and we determine the asymptotic behaviour in time of solutions in the range...
متن کاملTime-dependent Scattering Theory for Schrödinger Operators on Scattering Manifolds *
We construct a time-dependent scattering theory for Schrödinger operators on a manifold M with asymptotically conic structure. We use the two-space scattering theory formalism, and a reference operator on a space of the form R×∂M , where ∂M is the boundary of M at infinity. We prove the existence and the completeness of the wave operators, and show that our scattering matrix is equivalent to th...
متن کاملOperators of higher order
Motivated by results on interactive proof systems we investigate the computational power of quantifiers applied to well-known complexity classes. In special, we are interested in existential, universal and probabilistic bounded error quantifiers ranging over words and sets of words, i.e. oracles if we think in a Turing machine model. In addition to the standard oracle access mechanism, we also ...
متن کاملLagrange Multipliers for Higher Order Elliptic Operators
In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions. Mathematics Subject Classification. 41A10, 41A17, 65N15, 65N30. Received: April 5, 2004.
متن کاملMultilinear operators for higher-order decompositions
We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to consisely express the Tucker decomposition. The second operator, which we ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2013
ISSN: 0022-0396
DOI: 10.1016/j.jde.2013.01.022